Distributed Information Regularization on Graphs

نویسندگان

  • Adrian Corduneanu
  • Tommi S. Jaakkola
چکیده

We provide a principle for semi-supervised learning based on optimizing the rate of communicating labels for unlabeled points with side information. The side information is expressed in terms of identities of sets of points or regions with the purpose of biasing the labels in each region to be the same. The resulting regularization objective is convex, has a unique solution, and the solution can be found with a pair of local propagation operations on graphs induced by the regions. We analyze the properties of the algorithm and demonstrate its performance on document classification tasks.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust Fuzzy Content Based Regularization Technique in Super Resolution Imaging

Super-resolution (SR) aims to overcome the ill-posed conditions of image acquisition. SR facilitates scene recognition from low-resolution image(s). Generally assumes that high and low resolution images share similar intrinsic geometries. Various approaches have tried to aggregate the informative details of multiple low-resolution images into a high-resolution one. In this paper, we present a n...

متن کامل

Network-constrained Regularization and Variable Selection for Analysis of Genomic Data

Motivation: Graphs or networks are common ways of depicting information. In biology in particular, many different biological processes are represented by graphs, such as regulatory networks or metabolic pathways. This kind of a priori information gathered over many years of biomedical research is a useful supplement to the standard numerical genomic data such as microarray gene expression data....

متن کامل

Kernels and Regularization on Graphs

We introduce a family of kernels on graphs based on the notion of regularization operators. This generalizes in a natural way the notion of regularization and Greens functions, as commonly used for real valued functions, to graphs. It turns out that diffusion kernels can be found as a special case of our reasoning. We show that the class of positive, monotonically decreasing functions on the un...

متن کامل

Parameterless Discrete Regularization on Graphs for Color Image Filtering

A discrete regularization framework on graphs is proposed and studied for color image filtering purposes when images are represented by grid graphs. Image filtering is considered as a variational problem which consists in minimizing an appropriate energy function. In this paper, we propose a general discrete regularization framework defined on weighted graphs which can be seen as a discrete ana...

متن کامل

Efficient Distributed Semi-Supervised Learning using Stochastic Regularization over Affinity Graphs

We describe a computationally efficient, stochastic graph-regularization technique that can be utilized for the semi-supervised training of deep neural networks in a parallel or distributed setting. We utilize a technique, first described in [13] for the construction of mini-batches for stochastic gradient descent (SGD) based on synthesized partitions of an affinity graph that are consistent wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004